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Abstract 

   Management of groundwater resource systems is necessary in many countries to assure a sustainable water 
supply at the national, regional, and community levels. Intensive pumping of groundwater significantly affects 
individual users, agricultural users, regional land subsidence, and environmental problems. We employ an 
optimization technique to search for suitable pumping rates for wells arranged in a region to obtain maximum 
benefits, forming an optimal management policy under hydrological constraints. A linear programming 
technique based on the simplex algorithm is used as the measure, and a mathematical formulation of the 
groundwater management problem is developed. Two quantitative examples of multiple pumping systems 
demonstrate the effectiveness of the technique, and an efficient computer program implementing the 2-phase 
simplex algorithm is provided in an Appendix.  
   
Keywords: Groundwater management, Multiple-well system, Confined aquifer, Linear optimization technique, 

Simplex algorithm 
 
 

1. Introduction 
 
   Groundwater plays an important role in the development 
and management of regional water resources. Groundwater is 
important in industrial usage, but it also provides a 
significant percentage of the irrigation and domestic use 
supply, both rural and urban. In many developing countries, 
especially Middle-Eastern countries where river and lake 
surface water is not available in sufficient quantity, 
groundwater is the major water supply resource. 

In Afghanistan, the author’s homeland, the static water 
level is decreasing yearly, especially in expanding population 
areas, where groundwater usage is extremely high. For 
example, the groundwater level in Kabul City has decreased 
by about 10 meters over the last decade, mainly due to 
unplanned pumping by private users concentrated in that area. 
This has resulted in huge cone depressions.  
   Groundwater resource system management aims at 
achieving certain goals through decisions and policies related 
to operation of the system1). Goals may be established at the 
national, regional (provincial), community, and individual 
user levels. Specifically, groundwater management means 
determining numerical values of decision variables, including  
areal pump distribution, water levels in streams and lakes in 
    

contact with an aquifer, and capacity of new installations for 
pumping. The hydrological constraints to be satisfied include 
global and local water levels that should not drop below 
specified minimum elevations, and land subsidence that 
should not exceed specified values. The objective function is 
the total net benefit (total amount of pumping) from 
operating the system to be maximized. 

A linear programming (LP) technique can be applied to the 
groundwater management problem because the relationship 
between pumping rates and the drawdowns are linear, even in 
a multiple-well pumping system2). Below, we develop a 
mathematical formulation for groundwater management 
based on LP and show two quantitative examples.    
 

2. Groundwater Drawdown in Multiple Well Systems 
 
   Figure1 illustrates a radially converging flow to a well 
fully penetrating a homogeneous confined aquifer of infinite 
areal extent. The partial differential equation for a steady 
flow to the well in a radial coordinate system takes the form3)   
  
 
 
where h is the hydraulic head around the well. The boundary  
conditions at the well are r = rw, h = hw, and at some distance 
r = R, h = H. The distance R, where the drawdown is zero or 
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negligible, is called the radius of the influence circle. Table 1 
gives a typical range of R values for aquifer soil. For a 
constant pumping rate Qw, the boundary condition at the well 
face is 

 

 
where B is the thickness of the aquifer, and K is the hydraulic 
conductivity. Integrating Eq.(1) from r to R, we obtain   

 

 
 
where s(r) is the drawdown at distance r, and T =KB is the 
transmissivity of the aquifer.  
   When wells are spaced at distances smaller than their 
radius of influence R, they affect each other’s drawdown 
(Fig.2). Because the equation for flow in a confined aquifer is 
linear in h (r), the principle of superposition is applicable. In 
a confined aquifer in which N wells are operating at constant 
pumping rates, letting Qi denote the pumping rate at point 
( xw,i , yw,i), and Ri the influence circle of wells, the total 
drawdown at location ( xj, yj ) is 

 

 

 
where the distance r between a pumping site and observation 
point in Eq.(3) is                              
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
We next consider the plane region in Fig.3 as a 

quantitative demonstration of mutual interference of 
drawdown by multiple well pumping. There are three wells in 
the region, each pumping at constant rates of Q1 = 1500, Q2 = 
2000 and Q3 = 1500 m3/day from a subsurface confined 
aquifer of thickness 5 m and hydraulic conductivity 1×10-3 

m/s (transmissivity T = 5×10-3 m2/s). The objective region 
(500×250 m) is divided into a net of 25 m meshes, and total 
drawdown at each location is computed from Eq.(4). The 
radii of influence are assumed to be Ri = 500 m for every well. 
Equipotential (contour) lines are drawn by using the 
Lagrange-interpolation formula5).  

The resulting contour lines in Fig.3 indicate that 
drawdowns are mutually influenced due to simultaneous 
pumping by three wells. 
 

 
  

 
 
 
 
 
 
 
 
 
 

 
 

3. Formulation of the Optimization Problem  
   
   Generally, the optimization problem is characterized by  
an objective function, stating the quantity to be maximized or 
minimized and its functional dependence on decision 
variables, and by constraints on the decision variables among 
which an optimum is to be found6).  

In the groundwater management problem, the objective 
function and constraints of the pumping rates Qi of N wells 

Soils Grain size (mm) Radius of influence
circle  R (m) 

Coarse Gravel >10 >1500 

Gravel 2～10 500～1500 

Coarse sand 0.25～2 100～500 

Fine sand 0.05～0.25 10～100 

Silt 0.025～0.05 5～10 

Fig.1 A well in a confined aquifer. 
Fig.2 Composite drawdown curves by three wells.

Table 1  Radius of influence circle4).  
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Fig.3  Cones of depression for three pumping wells.
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are the decision variables, and the total amount of pumping is 
the objective function to be maximized. The constraints 
demand that at M locations ( xj, yj ) the drawdowns sj must be  
smaller than some given maximum drawdown sj,max to avoid 
problems such as drying up neighboring wells or excessive 
land subsidence in the area due to pumping. Formally 
expressed, the problem reads:     

 
 
 
 
 
 
The functional relationship between drawdowns and pumping 
rates is given by the analytical formula Eq.(4). The 
constraints for drawdown in Eq.(5) may be rewritten as 
 
 
 
 
 
 
The matrix aij is called the influence matrix and gives the 
change in drawdown at location j if the pumping rate at well i 
is increased by one unit. The optimization problem is linear 
as long as the objective function and constraints are linear, 
which requires an aquifer situation where the principle of 
superposition is applicable (i.e., linearity of the system). 
Therefore, the optimization model of Eq.(5) takes the form of 
a standard linear optimization problem that can be solved by 
the well-known simplex algorithm5). 
   The standard form of linear optimization is given by the 
expressions 
 
 
 

 
 
 

  
in which Z is the objective function, xi are the decision 
variables (i =1,・・・ , n), and pi are the benefit coefficients. There 
are m “less-than” constraints and n non-negative constraints. 
The system of inequalities can be changed into a system of 
equations by introducing non-negative slack variables yi such 
that6) 

 
 
 

The system is usually written in the form of a tableau like 
that shown in Table2. 

 
 

 
 

 
 

 
The system of linear equations (9) contains n+m 

non-negative variables appearing in m equations, so the 
system is generally undetermined. The set of equations forms 
a feasible region in n+m dimensional space, and is a convex 
set, bounded by planes. The optimum solution is at a corner 
of the feasible set. By setting n out of n+m variables to 0, 
Eqs.(9) can be solved for the remaining m variables. These m 
variables are called basis variables, and the n variables set to 
0 are called non-basis variables. The corner points of the 
feasible region are contained in the solutions obtained by 
making all possible choices of n non-basis variables out of 
n+m variables and then solving the system of Eqs. (9).  

Not all solutions are feasible, but the computation starts 
with a feasible solution, then exchanges one basis and one 
non-basis variable at a time. In the exchange process it is 
necessary to stay on the edge of the feasible region and move 
along the edge that gives the largest increase in the objective 
function. This is done by exchanging the non-basis variable 
that gives the largest increase in Z. The largest positive 
coefficient in the objective function indicates the non-basis 
variable to be exchanged6).  

The tableau in Table 2 shows the variables to be 

exchanged: The column with the largest pi determines xi (the 
pivot column), and the last column (bj) is divided by the 
elements of the pivot column. The smallest non-zero positive 
coefficient resulting from this operation indicates yj (the 
pivot row).  

For an arbitrary pivot element aij the transformation step 
may be expressed in tableau language by the following rules5): 
1) Divide the pivot column by the pivot element, leaving the 

pivot element unchanged. 
2) Divide the pivot row by the pivot element and multiply by 

-1, leaving the pivot element unchanged. 
3) Replace the pivot element by its inverse. 
4) Replace all other elements of the tableau according to the 

following rules:  
akl  →  akl  – akj 

ail 
/aij , bk →  bk – akj 

bi 
/aij  and  pl   by  pl  – ail 
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Table2  Simplex tableau. 
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The exchange process is repeated until all coefficients of 
the last row, meaning all pi of the transformed objective 
function, are negative. If no pivot element can be found in an 
iteration step before arriving at the solution, this indicates 
that the problem has no solution. 
 

4. Application of the Simplex Algorithm 
to Groundwater Management 

  
    Since aquifer management problems are not usually 
given in standard linear optimization form, some modifi- 
cations are required. If there are “larger-than or equality” 
constraints, the method is decomposed into two phases. The 
first phase starts from a non-feasible corner point and then 
finds a feasible solution. In the second phase, the standard 
procedure is performed. The “larger-than” constraints are 
modified to equality constraints by subtracting slack 
variables such that 
 
   
 
where k(i) are the line numbers of the l “larger-than” 
constraints. In the first phase, the following objective 
function is used: 
 
 
 
Here, zi are all artificial variables, meaning slack variables 
with coefficients of -1. 
   Equality constraints can be treated formally in the same 
way as “larger-than” constraints. Substituting Eqs.(10) into 
Eq.(11), we obtain 
      
 
 
where k(i) are the line numbers of the l larger-than and 
equality constraints. As the last term in Eq.(12) is a constant, 
maximizing Z ʼ is equivalent to maximizing the first term, 
leading to the new objective function   

 
 
 
In the first phase, –Z ʼ is maximized by exchanging variables 
in the standard manner, and when all coefficients of –Z ʼ have 
become less than or equal to 0, the second phase begins5).  
   The general two-phase simplex algorithm is given by 
Kuester and Mize7) as a FORTRAN program, which is 
rewritten here as a Visual BASIC program in an Appendix.  

As an application of LP to the groundwater management 
problem, the multiple well pumping system shown in Fig.3 is 
considered. The locations of the three pumping wells are,          

 
 
 
 
 
 
 
 
 
 
 
taking the top-left corner of the region as the coordinate 

origin,   ( xw,1 ,  yw,1 ) = (100 m,75 m)  , ( xw,2 , yw,2 ) = (250 m,175 m) 
and ( xw,3 , yw,3 

) = (375 m,125 m). At three sites, Site1 (150 

m ,150 m), Site2 (250 m ,75 m) and Site3 (300 m ,150 m), 
maximum allowable drawdowns are prescribed as s1 ≤ 2.5 m, 
s2 ≤ 2.5 m and s3 ≤ 3.0 m. The objective is now to pump as 
much water as possible without violating the constraints. If 
the data given above are substituted into Eqs.(7) and (8), the 
optimization problem is expressed by the tableau shown in 
Table3. 
 
 

 
 
 
 
 
 

 
The program listed in the Appendix yields optimum 

pumping rates of Q1 = 2580 m3/day, Q2 = 0 and Q3 = 2980 
m3/day. The cones of depression under the optimum pumping 
operation are depicted in Fig.4.  
  The next demonstration is a combination of calculating 
piezometric heads and optimizing pumping rates. Given an 
aquifer as shown in Fig.5, piezometric heads and the most 
efficient rate of pumping are calculated by LP. There are 
three pumping wells in the area, and piezometer heads in 
cells 1 and 2 are fixed and given by the river water level h1 = 
hr1 = 50 m, h2 = hr2 = 45 m.  

 
 
 
 
 
 
 

 
 
 

 Q1 Q2 Q3 ｂ Type
y1 54.57 50.29 25.23 2.5 < 
y2 38.34 51.26 39.25 2.5 < 
y3 27.09 69.79 58.74 3.0 < 
Z 1 1 1   

Fig.4  Cones of depression for optimum pumping rates.
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Table 3   Simplex tableau for multiple pumping. 

Fig.5 Aquifer and cells used in the analysis.
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In cells 3 and 4 the groundwater levels must not drop below 
hmin3 = 47.5 m and hmin4 = 42.5 m, respectively. The local 
transmissivities of the cells are T1 = T2 = T3 = T4 = 0.05 m2/s 
and T5 = T6 = 0.01 m2/s. The natural replenishment rate in the 
area is N = 1×10-8 m3/s/m2, and the cell dimensions are Δx = 

2000 m and Δy = 1000 m. The pumping rates at the three wells 
are to be determined such that the benefit  

 
 

becomes maximal. The benefit coefficients have values p1 = 
p2 = 1 and p3 = 1.2 units /(m3/s). Also, a minimum demand of 
D = 0.1 m3/s must be satisfied. 

 The constraints are expressed by the following set of 
equations and inequalities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  Input data and the solution for this problem are shown in 
Fig.7 in the Appendix. It is concluded that the wells must be 
operated at pumping rates Q1 = 0.10 m3/day, Q2 = 0, Q3 = 0.049 
m3/day. Figure 6 presents the resulting distribution of piezo- 
metric heads calculated by the iterative alternating direction 
implicit-finite difference method8) from which the aspect of 
subsurface flow due to the optimum pumping operation is 
clearly shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The optimization technique developed in this paper is appli- 
cable not only to groundwater management problem but also 
to petroleum reservoir management to determine optimum 
pumping rates for efficient operation. 
 

5. Conclusion 
 
   An LP technique was applied to the groundwater 
management problem to find optimum pumping operations 
under hydrological constraints. The major conclusions 
obtained through this study are as follows:  
1)  As the equation for flow in a confined aquifer is linear in 
drawdown of a hydraulic head, the principle of superposition 
is applicable. Therefore, the overall drawdown in a multiple 
well pumping system can be controlled by the linear 
programming technique. 
2) The optimization process is performed by using a simplex 
algorithm directly applied to the groundwater management 
problem with some modifications suitable for practical 
application. The 2-phase simplex algorithm is provided as a 
computer program to be employed in groundwater resource 
system planning and analysis.  
3) The optimization technique developed in this paper is 
applicable not only to the groundwater management problem 
but also to petroleum reservoir management to determine 
optimum pumping operations.  
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Appendix 
 

  A computer program for the simplex algorithm used in this 
paper is listed below. The program was originally given by 
Kuester and Mize7) in the FORTRAN language and was 
converted to VB by the authors. Variable m indicates the 
number of variables to be solved, and n is the number of 
constraints (excluding positivity constraints). Coefficients of 
constraints and the right sides of constraints are stored in 
arrays a and b. Coefficients of the objective function are in p.   
 
Dim fname, title, sg As String 
Dim n1, m, n, i, j, ni, ip, it, kc, kr, r1, io, _ 

 i1(50), i2(50) As Integer 
Dim ls, cj, ra, pv, z, sa, x, a(50,50), b(50), bp(50), _ 

p(50), p1(50), p2(50) As Single 
 
 
Private Sub Command2_Click() 
          
         ni = 0 
         For i = 1 To m 
             If bp(i) < 0 Then ni = ni + 1 
         Next i 
      
'   Generate Objective Function for Phase 1 
         For j = 1 To n 
             p1(j) = 0 
             For i = 1 To m 
                 If bp(i) < 0 Then p1(j) = _ 

 p1(j) + a(i, j) 
             Next i 
         Next j 
         For i = 1 To m 
             bp(i) = 0 
         Next i 
         ip = 1 
         it = 0 
         Picture3.Print " ITERATION    VAR IN _ 

   VAR OUT     OBJ  FUNCTION": Print 
      
'   Main Program 
         For j = 1 To n 
             p2(j) = p(j) 
         Next j 
          
'   Determine Pivot-Column 
flag0:   ls = 0 
         kc = 0 
         On ip GoTo flag1, flag2 
flag1:   If ni <= 0 Then GoTo flag14 
flag2:   For j = 1 To n 
 
'   Ignore Artificial Variables 
             If i2(j) = 0 Then GoTo flag5 
             On ip GoTo flag3, flag4 
flag3:       If p1(j) <= ls Then GoTo flag5 
             kc = j 
             ls = p1(j) 
             GoTo flag5 
flag4:       If p2(j) <= ls Then GoTo flag5 
             kc = j 
             ls = p2(j) 
flag5:   Next j 
         If kc <= 0 Then GoTo flag14 
 
'   Determine Pivot-Row 
         kr = 0 
         cj = ls 
         ls = 1E+20 
         For i = 1 To m 
             If a(i, kc) <= 0 Then GoTo flag6 
             ra = b(i) / a(i, kc) 

             If ra - ls >= 0 Then GoTo flag6 
             ls = ra 
             kr = i 
flag6:   Next i 
         If kr > 0 Then GoTo flag7 
         Picture3.Print: Print " VARIABLE "; _ 

 i2(kc); "  UNBOUNDED": Print 
         End 
flag7: 
 
'   Transform 
'   Divide by Pivot 
         pv = a(kr, kc) 
         For j = 1 To n 
             a(kr, j) = a(kr, j) / pv 
         Next j 
         b(kr) = b(kr) / pv 
         For i = 1 To m 
             If i - kr = 0 Then GoTo flag9 
             b(i) = b(i) - b(kr) * a(i, kc) 
             For j = 1 To n 
                 If j - kc = 0 Then GoTo flag8 
                 a(i, j) = a(i, j) - a(kr, j) _ 

 * a(i, kc) 
flag8:       Next j 
flag9:   Next i 
 
         For i = 1 To m 
             a(i, kc) = -a(i, kc) / pv 
         Next i 
         a(kr, kc) = 1 / pv 
          
'   Interchange Basis and Non-Basis Variables 
         r1 = i2(kc) 
         i2(kc) = i1(kr) 
         i1(kr) = r1 
         ls = p(kc) 
         p(kc) = bp(kr) 
         bp(kr) = ls 
         it = it + 1 
         If i2(kc) = 0 Then ni = ni - 1 
          
'   Compute Objective Function 
         z = 0 
         For i = 1 To m 
             z = z + bp(i) * b(i) 
         Next i 
         On ip GoTo flag10, flag11 
flag10:  sa = p2(kc) 
         For j = 1 To n 
             p2(j) = p2(j) - sa * a(kr, j) 
             p1(j) = p1(j) - cj * a(kr, j) 
         Next j 
         p2(kc) = -sa / pv 
         p1(kc) = -cj / pv 
         GoTo flag12 
flag11:  For j = 1 To n 
             p2(j) = p2(j) - cj * a(kr, j) 
         Next j 
         p2(kc) = -cj / pv 
 
'   Check for Essential Zeros 
flag12:  For i = 1 To m 
             For j = 1 To n 
                 x = a(i, j) 
                 If Abs(x) - 0.0000001 > 0 _ 

Then GoTo flag13 
                 a(i, j) = 0 
flag13:      Next j 
         Next i 
          
'   Iteration Log 
         Picture3.Print Tab(10); it; Tab(20); _ 

 i1(kr); Tab(30); i2(kc); Tab(40); z 
         GoTo flag0 
          
flag14: 
         If ip - 1 > 0 Then GoTo flag17 
         ip = 2 
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         If ni <= 0 Then GoTo flag15 
         Picture3.Print 
         Picture3.Print " SOLUTION INFEASIBLE": Print 
         GoTo flag16 
flag15:  Picture3.Print 
         Picture3.Print " SOLUTON FEASIBLE": Print 
         GoTo flag0 
flag16:  GoTo Terminate 
 
'   Output Routine 
flag17:  Picture3.Print 
         Picture3.Print " TOTAL NUMBER OF ITERATIONS   

"; it: Print 
         Picture3.Print " VALUE OF OBJECIVE FUNCTION   

"; z 
         
          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

          

Picture3.Print 
         Picture3.Print " VARIABLE NR.    VALUE": 

Print 
         io = 0 
         For i = 1 To m 
             If i1(i) <= 0 Or i1(i) >= 100 Then GoTo 

flag18 
             Picture3.Print Tab(10); i1(i); Tab(20); 

b(i) 
             io = io + 1 
flag18:  Next i 
         If io < n1 Then Picture3.Print: Picture3.Print 

" ALL OTHER ORIGINAL VARIABLES ARE ZERO."         
Terminate: 
End Sub 

 
          

 
 

Fig.7  VB-form for linear programming by the simplex algorithm.
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         If ni <= 0 Then GoTo flag15 
         Picture3.Print 
         Picture3.Print " SOLUTION INFEASIBLE": Print 
         GoTo flag16 
flag15:  Picture3.Print 
         Picture3.Print " SOLUTON FEASIBLE": Print 
         GoTo flag0 
flag16:  GoTo Terminate 
 
'   Output Routine 
flag17:  Picture3.Print 
         Picture3.Print " TOTAL NUMBER OF ITERATIONS   

"; it: Print 
         Picture3.Print " VALUE OF OBJECIVE FUNCTION   

"; z 
         
          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

          

Picture3.Print 
         Picture3.Print " VARIABLE NR.    VALUE": 

Print 
         io = 0 
         For i = 1 To m 
             If i1(i) <= 0 Or i1(i) >= 100 Then GoTo 

flag18 
             Picture3.Print Tab(10); i1(i); Tab(20); 

b(i) 
             io = io + 1 
flag18:  Next i 
         If io < n1 Then Picture3.Print: Picture3.Print 

" ALL OTHER ORIGINAL VARIABLES ARE ZERO."         
Terminate: 
End Sub 

 
          

 
 

Fig.7  VB-form for linear programming by the simplex algorithm.
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