非線形接触特性と粘弾性を考慮した紙の圧縮変形モデル 服部 泰久*1 戸川 翔斗*2

A Compression Model of Paper Considering Nonlinear Contact Properties and Viscoelasticity

by

Yasuhisa HATTORI^{*1} and Shoto TOGAWA^{*2} (Received on Mar. 31, 2016 and accepted on Jul. 7, 2016)

Abstract

This paper proposes a new model of the compression of paper considering viscoelastic deformation properties as well as nonlinear contact properties. Nonlinearity is modeled as a contact model of rough surfaces in which asperities of surface roughness formed by entangled fibers are distributed in the direction perpendicular to the surface. Viscoelasticity is modeled as a 3-element viscoelastic solid model by which delayed elastic deformation can be represented. An identification method for the proposed model using experimental data measured under several loading ratios was introduced and applied to typical measured data to assess its validity. In addition, a sequence process of loading-unloading action was simulated to demonstrate that the proposed model can represent the compression behavior of paper properly.

Keywords: Paper, Compression, Viscoelasticity, Nonlinear problem, Surface roughness

1. 諸言

印刷機や抄紙機などの紙を扱う機械において,紙の搬送はほとんどの場合,機械部品と紙の接触によって発生する摩擦を利用して行われる.このような機械の高精度化や生産性向上を目的に,これまで多くの摩擦搬送解析が行われ,設計への利用を想定したシミュレーションが行われてきた.例えば,矢鍋らは,摩擦力の速度依存性を考慮して摩擦パッド式給紙機構や分離ローラ式給紙機構のFEMシミュレーションを行った^{1,2)}.馬野・山浦は,ゴムローラによる紙の繰り出し機構の二次元接触解析を行い,紙・平板間の動摩擦係数のすべり速度依存性が搬送速度に大きく影響することを示した^{3,4)}.

しかしながら,これらの解析では紙の摩擦の速度依存 性に注目しながら,その原因には物理的な解釈を与えて いない.摩擦モデルとしては,動摩擦係数がすべり速度 を変数とするアークタンジェント型の関数で表される修 正クーロン摩擦モデルが採用されているが^{1,2,4)},これが 定量的に有効であるためには,実験結果との合わせ込み によるパラメータの調整を面圧などの条件ごとに行う必 要がある.紙の搬送機器の開発コスト低減のためには, 摩擦現象の物理的な理解のもとに,より広い状況に適用 可能な摩擦モデルの構築が求められる.

一方,紙の摩擦特性にはその圧縮変形特性が大きく影

*1 工学部機械工学科准教授

*2 工学研究科機械工学専攻修士課程

響していると考えられる.橋本らは,紙の表面粗さの考 慮のもとに厚さ方向弾性変形を扱った接触モデルと混合 潤滑理論を組み合わせて,高すべり速度までの摩擦予測 モデルを提案したが⁵⁾,低速度領域での摩擦係数のすべ り速度依存性については未解決のままであった⁶⁾.

ところで、摩擦係数がすべり速度にともなって増加す る性質はゴムなどのエラストマーに一般的に見られる性 質であり、粘弾性特性の現れと理解されている⁷⁾. この 知見を取り入れれば、低速度領域での摩擦係数のすべり 速度依存性を説明できる紙の摩擦モデルが構築できる見 込みがある.

そこで、紙の摩擦モデルへの適用をねらいとして、そ の第一段階として、圧縮変形挙動を粘弾性モデルで表現 した紙の接触モデルの確立を目的とする.筆者は、すで にステップ荷重による圧縮試験によって粘弾性モデルを 同定する方法を示したが⁸⁾.接触の非線形性のため面圧 ごとにモデルを同定する必要があった.本論文では、非 線形接触特性と粘弾性を同時に考慮可能な同定方法を導 入することによって、荷重および負荷速度の広範囲にわ たって紙の圧縮変形挙動を表現できるモデルを提示する.

2. 圧縮変形特性の測定

2.1 試料および実験装置

本論文では,厚さ約 70µm の未使用の新聞印刷用紙を 考察の対象とする. 実験装置 (Fig. 1) は, 試料を圧縮しその変形量の時間 変化を測定するものである.水平なステージに試料とな る紙片 1 枚を置き,上部より直径 10mmの円形平面の圧 子を押し付ける. 圧子はステージに対して垂直方向にの み自由度を持つように支持されており,試料を平行に圧 縮することができる.また,球面座により姿勢を微調整 できるようになっており,片当たりのない状態で永電磁 チャックに吸着することで,接触面内で均一な圧縮状態 を保つことができる.試料への荷重は,圧子を取り付け た可動部を電磁石 (図示略)で下方へ吸引することで負 荷するようになっており,ロードセルで荷重をモニター しながら電流をコントロールすることで任意のパターン で与えることができる.試料の変形は,ステージに組み 込んだ光ファイバー変位計によって,圧子の垂直変位を 測定することによって知ることができる.

2.2 実験方法および実験条件

この実験装置を用いて, Fig. 2 のような直線状に増加 するパターンの所要時間 を Table 1 のように変化させて, 様々な負荷速度により試料に荷重を与える.ただし,実 際には,負荷開始時の接触状態の不安定を避けるために, 試料にはあらかじめ最小限の荷重 0.1N(1.3kPa)をかけ ておく.また,繰り返し測定を行う際には,以前の負荷 履歴の影響を排除するために,各測定に先立って,600s 間最大荷重を負荷した後,600s 間無負荷状態に置く.こ れは,既報⁸⁾において観察された塑性変形(初回の負荷 によって除荷後に残留する変形)を完了させる役割にも なっている.

2.3 測定結果

Fig. 3 に, 典型的な測定例について, 荷重増加の所要時間ごとの荷重と変形量の関係を示す. 各条件において, 荷重が増加するほど変形量の増加が緩やかになっているのがわかる. また, 変形量の最大値は, 所要時間 500s

Fig. 1 Experimental apparatus

のとき最も大きく,所要時間が短くなるほど小さくなっている.これより,紙の圧縮変形の検討には,非線形特性と粘弾性の考慮が不可欠であることがわかる.

E縮変形モデル

3.1 モデルの構築とパラメータの同定

紙の表面には繊維の絡み合いによる粗さが構成されて おり,接触の非線形性はその粗さ突起が厚さ方向に分布 することによって起こるものとして,Fig.4のような圧 縮変形モデルを考える.突起の変位は高さ方向のみに起 こり,互いに干渉しないものとする.材料全体の変形は 遅延変形を表すことができる3要素の粘弾性固体モデル で表し,各突起が同一の特徴を持つとする.なお,紙の 繊維自体の圧縮は全体の変形に対してごくわずかである ので,ここでは突起頂点形状の変形は考えない.

Fig. 2 Loading pattern.

	Table 1	Experimental	conditions.
--	---------	--------------	-------------

Load amplitude W_1 [N]	20
(Contact pressure amplitude p_1 [kPa])	(255)
Loading time t_1 [s] (Loading rate \dot{p} [kPa/s])	0.1, 0.5, 5, 50, 500 (2550, 510, 5.1, 0.51, 0.051)

Fig. 3 Relation between load and compression for several loading time conditions.

最も高い突起頂点の位置を基準として、突起頂点の深 さを d_s 、その分布の確率密度関数を $\phi(d_s)$ とすると、平 面による圧縮が準静的である場合には、圧縮変形量cに 対する接触荷重 W_s は期待値として次のように表される.

$$W_s(c) = \frac{gA}{T} \int_0^c (c - d_s) \phi(d_s) \mathrm{d}d_s \tag{1}$$

ここで、Aは見かけの接触面積、Tは試料の厚さである. gは材料全体の準静的な弾性率であり、瞬間弾性率 g_1 、 遅延弾性率 g_2 、遅延粘性率 η_2 と次の関係にある.

$$g = \frac{g_1 g_2}{g_1 + g_2} \tag{2}$$

これは、最大変形時 ($c = c_1$) に全ての突起が接触しているとみなすと、測定された $W_s - c$ 曲線の勾配から次のように決定される.

$$g = \frac{T}{A} \frac{dW_s}{dc} \bigg|_{c=c_1}$$
(3)

また,式(1)より,任意の確率密度関数 $\phi(d_s)$ に対して 次式が成り立ち, $\phi(c)$ は $W_s(c)$ の2階導関数と同じ形と なる.

$$\phi(c) = \frac{T}{gA} \frac{d^2 W_s}{dc^2} \tag{4}$$

突起頂点は表面から深くなるにつれて増加し、変形を考察する有限の範囲においては単調増加と考えて差支えないので、その確率密度関数 $\phi(d_s)$ には最大変形量 c_1 までの範囲で次のような指数関数分布を採用する.

$$\phi(d_s) = \frac{1}{\sigma} e^{\frac{d_s - c_1}{\sigma}} \tag{5}$$

 σ はこの指数関数分布の標準偏差である.式(4)に式(5) を適用し、未変形時、最大変形時に荷重がそれぞれ 0、 W_1 であることを考慮すると、準静的圧縮による荷重 W_s は次 のように表される.

$$W_{s}(c) = \frac{gA}{T}e^{-\frac{c_{1}}{\sigma}}\sigma\left\{\left(e^{\frac{c}{\sigma}}-1\right) - \frac{c}{c_{1}}\left(e^{\frac{c_{1}}{\sigma}}-1\right)\right\} + \frac{c}{c_{1}}W_{1}$$
(6)

これを準静的な条件の測定結果に当てはめると,表面粗 さのパラメータσを決定できる.

圧縮が動的である場合には,接触荷重は圧縮変形の速度にも依存する.3要素粘弾性固体に大きさ1のステップ状のひずみの変化1(t)を与えたときの応力の応答は,

Fig. 4 3-element viscoelastic solid model considering nonlinear contact properties.

緩和弾性率 Y(t) として次式で与えられる.

$$Y(t) = \frac{g}{g_1 + g_2} \left\{ g_2 + g_1 \exp\left(-\frac{g_1 + g_2}{\eta_2}\right) \right\}$$
(7)

したがって, 圧縮変形量の変化 c(t)に対する接触荷重の 変化 $W_d(t)$ は, 深さ d_s の突起に作用する圧力が緩和弾性 率Y(t)とひずみ速度 $\dot{c}(t)/T$ の積の履歴積分で表されるこ とから, 期待値として次のように計算される.

$$W_{d}(t) = A \int_{0}^{c(t)} \left\{ \int_{t_{cont}(d_{s})}^{t} Y(t-t') \frac{\dot{c}(t')}{T} dt' \right\} \phi(d_{s}) dd_{s}$$
(8)

ここで、 $t_{cont}(d_s)$ は深さ d_s にある突起に接触が開始する時刻で、 $c(t) = d_s$ の条件から決まるものである.式(8)を動的な条件の測定結果に当てはめると、粘弾性パラメータ g_1, g_2, η_2 を決定することができる.

3.2 計算結果

Fig. 3 の測定例に対して, 圧縮変形モデルを特徴づけ るパラメータの同定計算を行った.まず,所要時間 500s の場合は,測定時間が十分長く変化は準静的であったと みなせるため,準静的条件のデータとして取り扱い,式 (2),(5)の当てはめより,準静的弾性率gと突起深さ分布 の標準偏差 σ を求めた.次に,すべての所要時間の場合 を動的条件のデータとして扱い,式(8)の当てはめから遅 延弾性率 g_2 と遅延粘性率 η_2 を求めた.瞬間弾性率 g_1 は, 以上の結果と式(2)の関係から算出した.なお,準静的条 件の当てはめ計算にはMarquart法を,動的条件の当ては め計算には DFP 法を用い,式(8)中の積分は数値積分した.

Fig. 5 に準静的条件データへの曲線の当てはめ計算の 結果を示す.荷重 W_s ,弾性率g,確率密度関数 ϕ とも, 変形量cの全域でよく当てはまっており,表面粗さの突 起深さ分布に採用した指数関数が適切であったことが分 かる.

Fig. 6 に動的条件データへの曲線の当てはめ計算の結 果を示す. 個々の測定データに対しては必ずしも最適な 当てはめでないものもあるが, すべての負荷時間の測定 データに対して平均的に曲線の当てはめが行われており, 負荷時間の変形量への影響を3 要素粘弾性固体モデルで 表現したことの妥当性が認められる.

Fig. 5 Curve fitting to measured data (Quasi-static condition).

Table 2 に当てはめによって決定されたモデルのパラ メータと関連する諸量を、上の測定例に対する結果と、5 回の測定データに対する結果の統計値を合わせて示す.

粗さ突起の深さ分布に関して、標準偏差 σ のばらつき は比較的小さく、最大深さ c_1 の4分の1程度の値を取っ ている.これは、表面から最大深さまでの範囲に98%程 度の突起が存在していることを表しており、指数関数分 布の仮定がよく当てはまっていたことを示している.

粘弾性パラメータに関しては,瞬間弾性率 g_1 と遅延弾 性率 g_2 は 30%程度のばらつきの範囲で求まっており, 弾性率比 g_2/g_1 は3程度の値である.これは遅延弾性部 分が瞬間弾性部分の3分の1程度と無視できない大きさ であることを示している.この結果は,表面から浅い部 分で起こる大きな瞬間変形を,表面粗さの突起深さ分布

Fig. 6 Curve fitting to measured data (Dynamic condition).

Table 2	Model	parameters	determined	by	curve	fitting
		*		~		<u> </u>

Daramatar	Present							
1 arameter		Ave.	Max.	Min.				
Prob. dens. function of roughness summit depth								
Max. of depth	2.413	2.931	3.459	2.413				
<i>c</i> ₁ [µm]			(+18.0%)	(-17.7%)				
Standard deviation	0.5847	0.8313	1.593	0.5081				
σ [µm]			(+91.6%)	(-38.9%)				
Max. of prob. dens.	0.8550	0.7034	0.9839	0.3139				
$1/\sigma \; [\mu m^{-1}]$			(+39.9%)	(-55.4%)				
Viscoelastic properties								
Quasi-static elastic	30.07	25.31	31.62	17.74				
modulus g [MPa]			(+25.4%)	(-29.9%)				
Instantaneous elastic	45.20	35.47	49.16	23.76				
modulus g_1 [MPa]			(+38.9%)	(-33.0%)				
Delayed elastic	89.75	102.2	165.5	70.02				
modulus g_2 [MPa]			(+61.9%)	(-31.5%)				
Ratio between elastic	1.986	3.215	6.454	1.803				
moduli $g_2 / g_1 [1]$			(+100%)	(-43.9%)				
Delayed viscous	119.9	2794	7738	8.113				
modulus η_2 [MPa·s]			(+177%)	(-99.7%)				
Delayed time	1.336	23.26	59.22	0.1159				
η_2/g_2 [s]			(+155%)	(-99.5%)				

が表現し得たことで、純粋に素地の変形特性が取り出されたものと考えられる.一方、遅延粘性率 η_2 のばらつきは非常に大きく、遅延時間 η_2/g_2 も2桁以上にわたってしまっている.これは、今回当てはめに使用したデータを得る測定方法では、遅延粘性率の影響が変化として表れにくく、測定誤差などに埋もれがちであったために、当てはめ計算において精度よく値を得ることが出来なかったと思われる.

なお、本計算例は厚さ約 70μm の未使用の新聞印刷用 紙を対象としたものであったが、荷重 W_sが変形量 c の指 数関数と一次関数の和で表される式(5)のような関係で あれば、別の種類の紙や異なる状況(使用歴等)であっ ても本モデルは適用可能と思われる.その場合、当ては めにより得られたパラメータが状態の違いを表す指標に なり得る.

4. 圧縮変形モデルの検証

4.1 シミュレーション方法

提案する圧縮変形モデルと同定されたパラメータの適 切性を検証するために、様々な荷重パターンによる圧縮 変形挙動をモデルによりシミュレーションする.ここで は、紙の摩擦搬送によくみられる負荷・除荷が連続する 過程を想定する.

Fig. 7 に示すような直線状に増加した後,直線状に減 少する荷重パターンで紙試料を圧縮し,変形挙動を測定 する.測定条件は Table 1 のとおりで,様々な負荷速度で 荷重変化を与える.前半部分はモデルのパラメータ同定 のための実験と共通であるが,引き続き同じ所要時間で 無負荷の状態まで除荷する.

シミュレーションは測定された変形量データを用いて 動的条件の場合の荷重の式(8)を計算することで行い,荷 重パターンが再現できるかどうかを評価する.ただし, 除荷過程においては,深さ d_s の突起に作用する圧力 $p(d_s,t)$ は変形の遅延のため負荷過程と対称にはならな い.積分値が 0 となる時刻以降 ($p(d_s,t) < 0$ と計算され る)は接触が解消されていると考えられ, $p(d_s,t) = 0$ と 置き直す必要がある.また,突起深さについての積分の 上限は最大深さ c_1 となる.以上より,除荷過程について の計算は次の式(8)のように表される.

$$W_d(t) = A \int_0^{c_1} p(d_s, t) \phi(d_s) dd_s$$

$$\uparrow \subset \uparrow \subset \bigcup \quad p(d_s, t) = \max\left(\int_{t'_{cont}(d_s)}^t Y(t-t') \frac{\dot{c}(t')}{T} dt', 0\right)$$
(8')

Fig. 7 Loading pattern for verification.

Fig. 8 Measured data and simulated results.

どの所要時間についてもシミュレーション結果は測定結 果に概ねよく一致しており,提案するモデルと同定され たパラメータで,広い負荷速度の範囲で紙の圧縮変形挙 動を表現できていることが分かる.ただし,所要時間の 長い500sと50sの場合のシミュレーション結果には,除 荷時に荷重の減少が遅れ,最終的に0に戻らない傾向が 見られた.これは,これらの条件では変形量の回復が著 しく緩慢であり,除荷終了後も残留変形量が大きかった ことが影響していると思われる.この部分には塑性変形 に近いような3要素粘弾性固体モデルで表現しきれない 変形が含まれていた可能性があり,シミュレーションの 精度を上げるためには,塑性変形を排除するように実験 条件の整備をするか,塑性変形を考慮できるモデルの拡 張が必要だと考えられる.

5. 結言

非線形接触特性と粘弾性を考慮することによって,荷 重および負荷速度の広範囲にわたって紙の圧縮挙動を表 現できるモデルを提案し,測定結果によってそのモデル のパラメータを同定する方法を示した.これを典型的な 測定例に適用することによってモデルの妥当性を確認し, さらに連続する負荷・除荷過程をシミュレーションする ことによって圧縮変形挙動を再現できることを示した.

参考文献

- 午鍋重夫・細川勇平・前田貴之・横山才二:分離ロー ラ式給紙機構の FEM シミュレーション,日本機械学 会論文集(C 編), Vol. 69, No. 683, pp. 1791-1797 (2003).
- 2) 矢鍋重夫・藤井和成・大浜靖士,摩擦パッドを持つ給 紙機構の FEM シミュレーション,日本機械学会論文 集(C編), Vol. 68, No. 676, pp. 3471-3478 (2002).
- 3) 馬野寛士,山浦弘:ゴムローラによる紙の繰り出しに 関する研究,日本機械学会論文集(C編), Vol. 75, No. 755, pp. 2476-2485, pp. 1965-1973 (2009).
- 馬野寛士,山浦弘:ゴムローラによる紙の繰り出しの 速度依存性に関する研究,日本機械学会論文集(C編), Vol. 77, No. 778, pp. 2476-2485 (2011).
- 5)橋本巨,佐々木将志:ペーパウェブと鋼ローラ間の接触力学に基づくトラクション予測モデル(第1報,理論モデルの提案とその実験的検証),日本機械学会論 文集(C編), Vol. 73, No. 726, pp. 602-610 (2007).
- 6) 服部泰久,橋本巨,川西博人,平野貴哉:紙-鋼間の 低速度摩擦特性,トライボロジー会議予稿集(東京 2007-5), pp. 107-108 (2007).
- D. F. Moore, The Friction and Lubrication of Elastomers, Pergamon Press (1975).
- 8) 服部泰久:紙の圧縮変形挙動とそのモデル化,日本機 械学会 2008 年度年次大会講演論文集(4), pp. 111-112 (2008).