後輪キャンバを用いた高機動性トライサイクルに関する研究 ^{林萼*1} 荻野 弘彦^{*2}

Research on High Maneuverability Tricycle with Variable Rear Wheel Camber Angle

by

Utena LIN ^{*1} and Hirohiko OGINO ^{*2} (Received on Sep. 30, 2018 and accepted on Jan. 10, 2019)

Abstract

In general, two-wheel vehicles have higher maneuverability, than four-wheel vehicles. For example, two-wheel vehicles can turn sharp corner at high speed with high yaw angular velocity. On the other hand, two-wheel vehicles are typically less stable than four-wheel vehicles due to disturbances or inappropriate control by the driver. The purpose of this study was to develop a vehicle having both the high maneuverability of two-wheel vehicles and high stability of four-wheel vehicles. We propose a tricycle (TVRC : Tricycle with Variable Rear Camber angle) that has two front steering tires and a rear driving tire with a variable camber angle. This paper reports the maneuverability of the TVRC .

Keywords: TVRC, Tricycle, Camber angle, Camber thrust

1. まえがき

二輪車は四輪車に比較し、一般的に非常に機動性,運 動性が高い.すなわち、四輪車に比較して小さな旋回半 径を大きな旋回角速度と接線方向速度で運動することが できる¹⁾.一方、車体に固定した座標系上で考えると、 旋回中に車体に作用する力とモーメントの釣り合い状態 は運転手の位置や傾き方の影響を大きく受け、外乱や運 転手の身動きで簡単に安定性を損なってしまう.結果と して、二輪車は四輪車よりも高い機動性、運動性を持つ が、安定性、安全性の面では劣ってしまうのが現状であ る.

一般的な三輪車としては、商用の駆動用かつ積載荷重 支持用後二輪と操舵用前一輪を持つものが広く使用され ている²⁾.しかし、前輪と運転手はロール回転するが、重 量物を積載している後二輪は固定され、旋回時に大きな キャンバ角を与えることができないため、運動性は一般 の二輪車には及ばない.二輪車と同等の運動性が期待で きる三輪車として Tricity³⁾があるが、前輪トレッドが短 いため、安定性に関しては四輪車には及ばないと考えら れる.安定性の高い三輪車として Spyder⁴⁾があるが、前 輪駆動の小型四輪車の前半分を切り取り、荷重支持用の 後一輪を設けたような形状であり、安定性が高い反面、 高い運動性を期待することはできない.旋回時に大きな 車体傾斜を利用する3輪車としてi-road⁵⁾がある.この車 両は前後上下方向へ可動する前2輪と駆動操舵用後1輪

*1 工学研究科機械工学専攻修士課程

*2 工学部動力機械工学科教授

で構成されており、旋回時には前2輪が前後上下へ移動 して車体全体を傾斜させることにより旋回運動をする. 2輪車のように大きな傾斜角を利用しているが、本研究 で提案する車両は前2輪に操舵角を与えることでさらに i-road よりも運動性を向上させることができると考えて いる.

そこで、二輪車の高い運動性と四輪車の高い安定性を 兼ね備えた車両の開発を本研究の目標としている.具体 的には操舵用前二輪,駆動用後一輪の三輪車(Tricycle)と する事により安定性を持たせるとともに,駆動用後一輪 と運転手を車両の運動状態を検知して、アクチュエータ により強制的に旋回内輪側へロール回転させるにより、 大きなキャバ角を与える車両を提案する(Tricycle with Variable Rear Camber Angle,以下 TVRC).これにより運 転手荷重を内輪方向へ移動させ、より大きな遠心力に耐 えるような車両を実現できると考える.

本報告は TVRC の実験車を試作し,運動性と安定性に 与える影響について述べたものである.駆動用後一輪を 設けた後部シャシにキャンバ角を与えた場合と与えなか った場合で旋回性能がどのように変化するかを明らかに した.

2. TVRCの概要

Fig.1にTVRCの構成を示す.提案するTVRCの諸々要素を示す.操舵前輪1は前部シャシに取り付けられ,操 舵機構11が設けられている.駆動後輪2には駆動用モータ3が設けられ,後部シャシ6に取り付けられている.前 部シャシ7と後部シャシ6はロール軸5で接続されてい る.後部シャシ6とロール軸5は剛に接続され、前部シャ シ7とロール軸5はロール回転用モータ4を介して接続 されている. モータ4を作動させると後部シャシ6はロ ール回転し、後輪2にキャンバ角を与えることができる. 運転手は後部シャシ6に乗っており、後部シャシ6とと もにロール回転する.後部シャシ6にはロール角センサ 8, 前部シャシ7には前後方向, 横方向加速度, ならびに ロール角ヨー角センサモジュール 9 が設けられている. さらに、操舵前輪には荷重センサ10が設けられ、輪荷重 の変化を測定することができる. 各センサの出力は制御 用コンピュータ 12 へ入力される. 運転手が操舵機構 11 を操作し旋回を開始すると,加速度,角速度センサモジ ュール9よりヨー角速度の変化が制御用コンピュータ12 へ入力される.制御用コンピュータ 12 はロール回転用 モータ4へ後部シャシ6を回転させる命令を出力する. 後部シャシ6の回転量はロールセンサ8により検出され、 制御用コンピュータ 12 ヘフィードバックされる.

後部シャシと運転手を強制的に旋回内輪側へ傾斜させ ることにより、旋回時に発生する大きな遠心力に釣り合 う力を発生させることができる.したがって、運転手自 らが車体を傾ける一般の二輪車よりも大きな遠心力に釣 り合わせることができ、より小さな半径を大きな速度で 旋回することができると考える.

3. 実験

3.1 実験装置の構成

Fig.3にTVRCの実験装置を示す.TVRCに後部シャシ にキャンバ角を与えた場合と与えなかった場合で旋回性 能がどのように変化するのを実験するため, 必要な要素 だけ残って作った実験装置を示す. 車体は前後2分割構 造となっており、トレッド 255 mm、タイヤ径 69.5 mm、 タイヤ幅35mmの前2輪1を取り付けた車体前部6には 操舵用リンク機構7が設けられている.車体後部4には 駆動用モータ 3 RS-540SH とタイヤ径 60 mm, タイヤ幅 20 mm の駆動輪 2 が取り付けられており、ホイールベー スは 275 mm で, 前後の車体は1本のロール用軸で接続 されてロールキャンバψの調整機構5が設けられている. 受信機8が受けた信号を駆動用モータ3へ送って駆動ト ルクを制御することにより車速を決める.車体前部6に は感度:660g/mV の加速度センサ KXR94-2050 モジュー ルと感度:0.00384 mV/deg/sec のジャイロセンサ ENC-03R を設けた.

Fig. 1 Construction of TVRC.

測定結果は無線通信により測定用コンピュータへ送信 した. なお,加速度センサが周波数 50Hz,ジャイロセン サが周波数 100Hz の帯域にノイズが多いため,低域通過 フィルタを設けた.

3.2 実験条件と方法

キャンバ角 ψ が旋回性能と安定性に与える影響を明確 するために, 舵角 δ とキャンバ角 ψ を変化させて走行実 験を行った. Fig. 2 に舵角 δ とキャンバ角 ψ の定義を示す. 舵角 δ は 10 deg, 20 deg, キャンバ角 ψ は 0 deg と実験装 置の最大限界の 14 deg に変化させた.実験は実験場所の 大きさに制限されたとモータを過熱にならないため, 停 車状態から加速を開始し, 加速を固定して 5 周に走らせ て終了させた.本研究は旋回半径を動画で測って舵角 δ 10 deg と 20 deg それぞれの旋回半径を固定して加速さ せて横方向加速度とヨー角速度の変化を調べる.

4. 結果および考察

4.1 実験結果

4.1.1 舵角 10 deg

モータの振動はセンサに大きな影響を与えた.そのため、実験結果にはノイズが強く残ってるように見えるから、移動平均式 (1)を用いてキャンバ角 $\psi=0$ deg と 14 deg の加速度が一定になる 20 s から 30 s の実験データを比較する.

Fig. 4~9に舵角 δ =10 deg でキャンバ角 ψ を変化させた 時の実験結果を示す. Fig. 4,5 は車体前後方向加速度, Fig. 6,7 は旋回中心方向加速度を示す.また, Fig. 8,9 はヨー 角速度を示す.車両の加速は手動により制御しているが, Fig. 4 と Fig. 5 を移動平均式(1)で計算して ψ =0 deg の 方は加速度平均が 1.09 cm/s², ψ 14 deg の方は加速度平均 が 1.53 cm/s² である.一方、Fig.6 と Fig.7 に示した平均的 な中心方向加速度の線を比較すると,キャンバ角を大き くすると横方向加速度が大きくなっていることがわかる. 以上の結果で計算して ψ =0 deg の方の接線加速度は左 75.02 deg で 5.92 cm/s², ψ 14 deg の方の接線加速度は左 79.77 deg で 6.14 cm/s². Fig. 8 と Fig. 9 を比較すると ψ =14 deg の方はヨー角加速度約 0.38 deg/s²は ψ =0 deg の方の 約 0.54 deg/s²より小さくなっていることがわかる.

4.1.2 舵角 20 deg

Fig. 10~15 に舵角 δ=20 deg でキャンバ角 φ を変化さ せた時の実験結果を示す. Fig. 10, 11 は車体前後方向加速 度, Fig. 12, 13 は車体中心方向加速度を示す. また, Fig. 14, 15 はヨー角速度を示す.

Fig. 2 Front view of TVRC.

Fig. 10 と Fig. 11 を移動平均式(1)で計算して ψ 0 deg の方は加速度平均が 1.74 cm/s², ψ =14 deg の方は加速度平 均が 1.03 cm/s² であることが確認できる. 一方, Fig. 12 と Fig. 13 に示した平均的な中心方向加速度の線を比較する と,キャンバ角を大きくすると横方向加速度が大きくな っていることがわかる. 以上の結果で計算して ψ 0°の方 の接線加速度は左 70.26 度で 4.85 cm/s², ψ =14 deg の方の 接線加速度は左 80.45 度で 6.235 cm/s². Fig. 14 と Fig. 15 を比較すると ψ =14 deg の方はヨー角加速度約 0.237 deg/s² は ψ =0 deg の方の約 0.631 deg/s² より小さくなって いることがわかる.

Fig. 3 Experimental device of TVRC.

Fig. 4 X-direction acceleration in steering angle 10° of camber $\psi 0^\circ$.

Fig. 5 X-direction acceleration in steering angle 10° of camber ψ 14°.

Fig. 6 Y-direction acceleration in steering angle 10° of camber ψ 0°.

Fig. 7 Y-direction acceleration in steering angle 10° of camber ψ 14°.

Fig. 8 Yaw angular acceleration in steering angle 10° of camber ψ 0°.

Fig. 9 Yaw angular acceleration in steering angle 10° of camber ψ 14°.

Fig. 10 X-direction acceleration in steering angle 20° of camber ψ 0°.

4.2 考察

モータの振動はセンサに大きな影響を与えた.そのため,実験結果にはノイズが強く残ってるとみえるが,数 値の勾配の変化は読める.

舵角は10 degから20 deg へ増加すると共に,進行方向 への抵抗力が増えて車速が落ちる.そのため,数値的に は舵角20 degの実験の加速度値が舵角10 degの実験の加 速度値より低いになる.

後部車体,操作者及び後車輪を傾きさせて旋回中心方 向へ倒れる力及び後車輪と地面の反力より旋回中心方向 への力を増加してより大きな遠心力と釣り合いことがで きるになることは確認できた.中心方向加速度の増加と ヨー角加速度の変化が減少することが確認できた.

Fig. 11 X-direction acceleration in steering angle 20° of camber w 14°.

Fig. 12 Y-direction acceleration in steering angle 20° of camber ψ 0°.

Fig. 13 Y-direction acceleration in steering angle 20° of camber ψ 14°.

5. まとめ

後部シャシをモータにより強制的に傾斜させることに より.運動性と安定性を向上させた3輪車の基礎的な模 型実験を行い、以下のことがわかった

- (1) 旋回中心への力を増加してより大きな遠心力と 釣り合いことができるになること.
- (2) 中心方向加速度の増加と共に、ヨー角加速度の 変化が減少することは確認できた.

参考文献

- 阿部正人:自動車の運動と制御,東京電機大学出版局, pp.50-59 (2008).
- 2) ホンダ GYRO X, <https://www.honda.co.jp/GYROX/>(アクセス2018年6月)
- 3) ヤマハ Tricity, <https://www.yamaha-motor.co.jp/mc/lineup/tricity/index. html>.
- 4) "Cam-Am Spyder", <https://can-am.brp.com/> (アクセス 2017 年 9 月)
- 5) "トヨタ i-RAOD", <http://www.toyota.co.jp/jpn/tech/personal_mobility/i-roa d/> (アクセス 2017 年 10 月).

Fig. 14 Yaw angular acceleration in steering angle 20° of camber ψ 0°.

Fig. 15 Yaw angular acceleration in steering angle 20° of camber ψ 14°.