

 ― 2 ―

3. Method

3.1 Purpose of the experiment
It is difficult to investigate the relationship between

programming skills accurately, as the results reported in
[11] and [12] slightly differ. One reason that makes it
difficult is the wide range of conditional statements in
programming languages. The authors of [11] and [12]
investigated proceedings, functions, iterations, variables,
and character data. They studied the statements by tracing,
explaining, writing, and modifying them. A small number
of conditional statements can result in a significant number
of related questions. This makes it difficult to compare the
details of each condition, as time in an experiment is
limited.

In this study, we focus on evaluating reading and
modification skills, and we only consider selection,
iteration, and nested (e.g., nested iteration-selection)
statements. The questions for the reading and modification
tasks use similarly structured code to minimize the
difference in difficulty level. We prefer free-response
questions to multiple-choice questions, as we thought a
multiple-choice test would give the test subjects clues on
tracing and modifying the code.

The purpose of a programming study is to acquire code
writing skills with a deeper understanding. However, for
novice programmers, it is difficult to write code from
scratch even if they can read code of the same difficulty
level. Because we used free-response questions, a test
subject might not be able to answer some of the questions.
This makes it difficult to analyze the comprehension level
of test subjects. For the experiment, we, therefore, used a
modification task and not a writing task so that we can
gather enough data for the analysis.

3.2 Detail of the experiment
The experiment comprised two tasks, one tracing task

and one modification task. Both tasks had ten questions

each and employed similarly structured code of
introductory difficulty level. Table 1 lists the questions.

The first task was code tracing. Subjects were given code
fragments written in the programming language C and
asked to write the process result for each question. The
second task was code modification. Subjects were given
code fragments and the required result that differed from
the process result of the given code. The subjects had to
correct the code such that it produced the required result.

The questions were designed to investigate the depth of
understanding of each C statement at an introductory level,
so the code fragments gradually changed from easy (e.g.,
simple selection) to difficult (e.g., nested iteration).
Question 1 (Ot-1) focusses on the output of code variables.
Question 2 and Question 3 (Sl-1, Sl-2) ask for a simple
code selection. Question 4 to Question 7 (It-1 to It-4) deal
with simple iterative code fragments. Question 8 and
Question 9 (Ns-1, Ns-2) look into nested iteration-selection

Table 1 Question list of the experiment. Both tracing
and modification tasks use same question list.

Question name
(question ID) Description

Output 1 (Ot-1) Output of variable

Selection 1 (Sl-1) Selection + output

Selection 2 (Sl-2) Selection + output

Iteration 1 (It-1) Iteration + output. Afterthought is +1

Iteration 2 (It-2) Iteration + output. Afterthought is +2

Iteration 3 (It-3) Iteration + output. Afterthought is -1

Iteration 4 (It-4) Iteration + output. Afterthought is -2

Nested 1 (Ns-1) Nested iteration-selection + output

Nested 2 (Ns-2) Nested iteration-selection + output

Nested 3 (Ns-3) Nested iteration-iteration + output

Table 2 Detail of point allocation for each question
Type Score Description

Tracing

task

50%

Score of output number. (e.g. In
case correct answer has 5 output
values, subject get 50% points
when the subject write 5 values,
and get 40% points when 4 or 6
values are written.). The unit of
counts are based on output
functions usage, so a different
format output is not counted as a
correct answer.

30%

Score of calculated values. (e.g. In
case a correct answer has 5 output
values, subject get 30% points if
all written values are correct, and
get 24% points when 4 values are
correct.)

20%

Score of output format. Subject get
20% points if a written answer is a
correct format, and subtracted if
the format is incorrect. (e.g. Get no
score in case line break or space
are used for separation of values)

Modification

task

50%

Score of modification parts. (e.g.
In case correct answer has 5
correction parts, get 50% points
when all modification parts are
modified, and get 30% points when
only 3 parts are modified.
Scores are subtracted in case
wrong prats are modified.
Subtracted 25% points if 5 wrong
prats are modified)

30%

Score of process result values.
(e.g. In case a correct answer has 5
output values, subject get 30%
points if all written values are
correct, and get 24% points when 4
values are correct.)

20%

Score of syntax. Subject get 20%
points if a written code has no
syntax error, and subtracted 20%
points for errors (e.g. forget a
semi-colon, forget variable
declaration)

Remarks Subject gets no point when there is
no modification to the code.

Proc. Schl. ITE Tokai Univ.
Vol. xx,No.xx ,20xx,pp.xxx -xxx

― 1 ―

Investigating the relationship between tracing skill and modification
skill for different programming statements

by

Satoru KIKUCHI*1 and Kazuhiko HAMAMOTO*2
(received on Mar.31, 2016 & accepted on May.26, 2016)

Abstract

In our study, we investigate the relationship between tracing and modification skills for different programming statements.
The experiment comprised two tasks, a tracing task and modification task, and asked questions about basic programming
statements (e.g., selection, iteration, and nested statements). The result indicates the following three points: (1) it is possible
that the test subjects applied a different strategy for selection statement knowledge and iteration statement knowledge, (2) for
iterative code, a code-modification task is easier than a code-tracing task, (3) it is possible that experience with frequently
occurring code facilitates the learning process, even if the code is complex.

Keywords: Programming education, Skill hierarchy, Tracing skill, Modification skill

1. Introduction

Programming is an essential skill for computer science
students, but it is not easy to improve a novice’s
programming skills. Many researchers all over the world
have studied and proposed various kinds of teaching
methods [1]-[4]. Those methods can be divided into two
main categories according to the acquired knowledge. The
methods of the first category emphasize comprehension of
programming concepts and then expect the students to
deduce from the knowledge. Conventional programming
classes commonly follow this approach. The methods of the
second category emphasize hands-on programming
experience and then expect the students to apply the
knowledge through induction. Both methods are used since
the 1970s and are still used [5], [6].

Novice programmers, that have little experience such as
a student who have taken only an introductory class at a
university, can acquire an incorrect understanding of
programming statements. This is called misconception and
can even happen for simple statements [7]. Misconception
causes inconsistent performance of students. For instance,
it is possible that students can trace a simple code fragment
but cannot trace slightly modified code, or they can trace
code but cannot write similar code.

Study methods that emphasize an experience such as
problem-based learning (PBL) [8] focus on acquiring a
deeper understanding of a subject by solving problems but
require teaching resources (i.e., tutors) and a
comprehensive set of study questions. However, teaching
resources are limited, and only a few good questions are
available [8]-[10].

For most programming statements, it is assumed that
gaining an experience is effective for deep understanding.
However, if there are statements that are acquired a
deeper understanding by conventional method, teachers
can employ experience-based methods only for the
experience-relevant statements. This allows them to create
good questions effectively and saves teaching resources.
However, it does not take into account that one requires
experience for a deeper understanding of all programming
statements. In this study, we investigate the relationship
between program tracing and writing skills for all
statements and examine statements that are relevant to
know for a deeper understanding.

2. Related work

Previous research has investigated the relationship

between different programming skills and suggested a skill
hierarchy, with the skill of tracing iterative code and the
skill of explaining code at a lower level than the skill of
writing code [11]. This means that at least tracing and
explanation skills are required to write code.

In [12], the authors also investigate a hierarchy of
programming skills and added code-modification skill to
the analysis. Their results do not completely match the
results of [11]. The relationship between the skill of
explaining code and the skill of writing code is the same as
in [11]. However, tracing skill and writing skill are
different and not directly correlated with each other. The
skill of modifying non-iteration statements ranks lower
than the skill of tracing non-iteration statements, and the
skill of tracing iteration statements ranks lower than the
skill of modifying iteration statements. It means the skill of
modifying non-iteration statements is required to read code,
and reading of iteration statements is required to modify
iteration statements.

*1 Graduate School of Science and Technology, Doctoral
Program, Tokai University
*2 Department of Information Media Technology, School
of Information and Telecommunication Engineering,
Professor, Tokai University

Paper

－ 8－

東海大学紀要情報通信学部
Vol.9,No.1,2016,pp.8-14

Paper

 ― 2 ―

3. Method

3.1 Purpose of the experiment
It is difficult to investigate the relationship between

programming skills accurately, as the results reported in
[11] and [12] slightly differ. One reason that makes it
difficult is the wide range of conditional statements in
programming languages. The authors of [11] and [12]
investigated proceedings, functions, iterations, variables,
and character data. They studied the statements by tracing,
explaining, writing, and modifying them. A small number
of conditional statements can result in a significant number
of related questions. This makes it difficult to compare the
details of each condition, as time in an experiment is
limited.

In this study, we focus on evaluating reading and
modification skills, and we only consider selection,
iteration, and nested (e.g., nested iteration-selection)
statements. The questions for the reading and modification
tasks use similarly structured code to minimize the
difference in difficulty level. We prefer free-response
questions to multiple-choice questions, as we thought a
multiple-choice test would give the test subjects clues on
tracing and modifying the code.

The purpose of a programming study is to acquire code
writing skills with a deeper understanding. However, for
novice programmers, it is difficult to write code from
scratch even if they can read code of the same difficulty
level. Because we used free-response questions, a test
subject might not be able to answer some of the questions.
This makes it difficult to analyze the comprehension level
of test subjects. For the experiment, we, therefore, used a
modification task and not a writing task so that we can
gather enough data for the analysis.

3.2 Detail of the experiment
The experiment comprised two tasks, one tracing task

and one modification task. Both tasks had ten questions

each and employed similarly structured code of
introductory difficulty level. Table 1 lists the questions.

The first task was code tracing. Subjects were given code
fragments written in the programming language C and
asked to write the process result for each question. The
second task was code modification. Subjects were given
code fragments and the required result that differed from
the process result of the given code. The subjects had to
correct the code such that it produced the required result.

The questions were designed to investigate the depth of
understanding of each C statement at an introductory level,
so the code fragments gradually changed from easy (e.g.,
simple selection) to difficult (e.g., nested iteration).
Question 1 (Ot-1) focusses on the output of code variables.
Question 2 and Question 3 (Sl-1, Sl-2) ask for a simple
code selection. Question 4 to Question 7 (It-1 to It-4) deal
with simple iterative code fragments. Question 8 and
Question 9 (Ns-1, Ns-2) look into nested iteration-selection

Table 1 Question list of the experiment. Both tracing
and modification tasks use same question list.

Question name
(question ID) Description

Output 1 (Ot-1) Output of variable

Selection 1 (Sl-1) Selection + output

Selection 2 (Sl-2) Selection + output

Iteration 1 (It-1) Iteration + output. Afterthought is +1

Iteration 2 (It-2) Iteration + output. Afterthought is +2

Iteration 3 (It-3) Iteration + output. Afterthought is -1

Iteration 4 (It-4) Iteration + output. Afterthought is -2

Nested 1 (Ns-1) Nested iteration-selection + output

Nested 2 (Ns-2) Nested iteration-selection + output

Nested 3 (Ns-3) Nested iteration-iteration + output

Table 2 Detail of point allocation for each question
Type Score Description

Tracing

task

50%

Score of output number. (e.g. In
case correct answer has 5 output
values, subject get 50% points
when the subject write 5 values,
and get 40% points when 4 or 6
values are written.). The unit of
counts are based on output
functions usage, so a different
format output is not counted as a
correct answer.

30%

Score of calculated values. (e.g. In
case a correct answer has 5 output
values, subject get 30% points if
all written values are correct, and
get 24% points when 4 values are
correct.)

20%

Score of output format. Subject get
20% points if a written answer is a
correct format, and subtracted if
the format is incorrect. (e.g. Get no
score in case line break or space
are used for separation of values)

Modification

task

50%

Score of modification parts. (e.g.
In case correct answer has 5
correction parts, get 50% points
when all modification parts are
modified, and get 30% points when
only 3 parts are modified.
Scores are subtracted in case
wrong prats are modified.
Subtracted 25% points if 5 wrong
prats are modified)

30%

Score of process result values.
(e.g. In case a correct answer has 5
output values, subject get 30%
points if all written values are
correct, and get 24% points when 4
values are correct.)

20%

Score of syntax. Subject get 20%
points if a written code has no
syntax error, and subtracted 20%
points for errors (e.g. forget a
semi-colon, forget variable
declaration)

Remarks Subject gets no point when there is
no modification to the code.

－ 9－

Satoru KIKUCHI and Kazuhiko HAMAMOTO

 ― 4 ―

the high and low tracing groups and the high and low
modification groups. The question asked in the
questionnaire was “Do you often program in your private
time?” All seven subjects who answered “YES” belonged
to the high tracing group and the high modification group.
The other subjects who answered “NO” belonged to high
and low groups. With respect to tracing skills, four subjects
were ranked as high and seven were ranked as low. With
respect to modification skills, seven were ranked as high
and four were ranked as low. Three subjects who answered
“NO” were classified into the low group for tracing but into
the high group for modification.

Table 7 shows the subjects’ grades for introductory
programming summarized for the high and low tracing and

Table 4 Score comparison of tracing task between
high group and low tracing group. (Bonferroni

corrected p-values)
ID Group Mead (SD) Difference

Ot-1
High 98.2 (4.0)

t(7.3)=3.21,p=0.140 Low 85.7 (9.8)

Sl-1
High 94.5 (12.9)

t(11.4)=2.93,p=0.133 Low 74.3 (15.1)

Sl-2
High 97.3 (6.5)

t(6.3)=2.39,p=0.525 Low 67.1 (33.0)

It-1
High 93.7 (11.3) *

t(6.7)=4.16,p=0.046 Low 33.1 (37.4)

It-2
High 95.4 (13.8) *

t(7.2)=4.01,p=0.049 Low 39.1 (35.4)

It-3
High 98.5 (3.5) *

t(6.1)=4.52,p=0.039 Low 40.0 (34.2)

It-4
High 99.5 (1.5) *

t(6.0)=4.48,p=0.042 Low 39.7 (35.3)

Ns-1
High 86.5 (21.5) ***

t(15.2)=8.38,p<0.001 Low 11.1 (16.5)

Ns-2
High 84.5 (23.5) ***

t(15.5)=7.70,p<0.001 Low 10.3 (17.3)

Ns-3
High 90.3 (19.1) *

t(8.0)=4.16,p=0.032 Low 25.9 (38.0)

Table 5 Comparison of modification task between
high group and low tracing group. (Bonferroni

corrected p-values)
ID Group Mead (SD) Difference

Ot-1
High 92.3 (14.4)

t(9.9)=0.50,p=1.0 Low 87.9 (20.2)

Sl-1
High 95.0 (12.4)

t(6.7)=1.77,p=1.0 Low 65.7 (42.8)

Sl-2
High 89.5 (24.1)

t(8.3)=1.97,p=0.833 Low 53.3 (44.7)

It-1
High 90.9 (30.2)

t(8.5)=2.17,p=0.601 Low 42.9 (53.5)

It-2
High 100 (0.0)

t(6.0)=2.83,p=0.300 Low 42.9 (53.5)

It-3
High 90.9 (30.2)

t(9.1)=1.26,p=1.0 Low 65.6 (47.2)

It-4
High 100 (0.0)

t(6.0)=1.73,p=1.0 Low 75.4 (37.5)

Ns-1
High 93.2 (15.4) *

t(8.1)=4.12,p=0.033 Low 43.3 (29.6)

Ns-2
High 59.6 (27.5)

t(15.5)=2.20,p=0.430 Low 34.9 (20.1)

Ns-3
High 84.9 (26.1)

t(13.5)=2.99,p=0.101 Low 48.6 (24.5)

Table 6 Summary count of programming experience
questionnaire answer of high and low group in each

task. Value in a cell is a number of subjects.
 Group Tracing task Modification task

Yes
High 7 7

Low 0 0

No
High 4 7

Low 7 4

Table 7 Summary count of introductory
programming class grades questionnaire answer for

high and low group of each task.
Introductory Group Tracing task Modification task

S
High 2 3

Low 1 0

A
High 3 4

Low 2 1

B
High 1 1

Low 0 0

C
High 4 5

Low 4 3

N
High 1 1

Low 0 0

Table 8 Summary count of advanced programming
class grades questionnaire answer for high and low

group of each task.
Advanced Group Tracing task Modification task

S
High 3 3

Low 0 0

A
High 4 4

Low 0 0

B
High 0 0

Low 0 0

C
High 0 1

Low 2 1

N
High 4 6

Low 5 3

 ― 3 ―

statements. Question 10 (Ns-3) is about a nested
iteration-iteration statement. The appendix gives more
details about the questions.

We analyzed the result by comparing the scores of the
high tracing score group and the low tracing score group
for each question of both tasks.

Before the experiment, the test subjects filled out a
questionnaire and provided information about their grades
for introductory and advanced programming classes and
about their programming experience outside of class. The
introductory class covers basic programming statements
such as selection and iteration. The advanced class covers
advanced elements such as file IO, functions, and structure.
Both classes follow the conventional teaching method and
are not experience-based.

4. Result

Eighteen subjects completed the experiment, and all of
them had taken a programming class at University.

We allocated a score of 100 for the tracing and
modification tasks and distributed the points equally over
the questions. Table 2 provides details on point allocation
for each question. Since the goal of the experiment is to
investigate the depth of understanding of programming
concepts, we consider comprehension of programming
structure the most important aspect. Thus, we awarded half
of the points for programming structure comprehension. In
the tracing task, the most important aspect is the number of
output values, and in the modification task, the most
important aspect is the place of code modification.

The average score for the tracing task was 73.9
(SD=28.1), and the average score for the modification task
was 76.6 (SD=24.7).

4.1 Classification of the subjects

We divided the test subjects into two groups according to
two different aspects.

The first aspect is how well they scored in the tracing
task. We used hierarchical cluster analysis with Ward’s
method to measure the proximity between groups of
variables, and Squared Euclidean distance to measure the
distance of the variables. This analysis put eleven subjects
into the high tracing group and seven subjects into the low
tracing group. The second aspect is how well they scored in
the modification task. The analysis put fourteen subjects
into the high modification group and four subjects into the
low modification group. Table 3 shows the result.

4.2 Score comparison between high and low tracing
groups

Fig.1 and Fig.2 show the average scores of the high
tracing group and the low tracing group. Table 4 compares
the tracing scores of the high and low tracing groups, while
Table 5 compares their modification scores. We employed
one-tailed Welch’s t test for the comparisons and
Bonferroni modification in case of multiple comparisons.

In the tracing task, four questions about iteration (It-1 to
It-4) revealed a significant difference at a level of p = 0.05
between the high tracing group and the low tracing group.
Two questions about iteration with selection (Ns-1, Ns-2)
revealed a significant difference at a level of p = 0.001 and
question about nested iteration-iteration (Ns-3) revealed a
significant difference at a level of p = 0.05. Other questions
did not reveal a significant difference.

In the modification task, only one question about nested
iteration-selection (Ns-1) revealed a significant difference
at a level of p = 0.05. No other questions revealed a
significant difference.

4.3 Comparison of questionnaire answers between high

and low groups for each task.
Table 6 compares the programming experience between

Table 3 Classification result of tracing and
modification task.

Type Tracing task Modification task

High group 11 14

Low group 7 4

Fig.1 Average score of the tracing task for high and
low tracing group. X-axis is question ID, Y-axis is

score of the task and error bar shows SD.

Fig.2 Average score of the modification task for high
and low tracing group. X-axis is question ID, Y-axis is
score of the task and error bar shows SD.

－ 10－

Investigating the relationship between tracing skill and modification skill for different programming statements

 ― 4 ―

the high and low tracing groups and the high and low
modification groups. The question asked in the
questionnaire was “Do you often program in your private
time?” All seven subjects who answered “YES” belonged
to the high tracing group and the high modification group.
The other subjects who answered “NO” belonged to high
and low groups. With respect to tracing skills, four subjects
were ranked as high and seven were ranked as low. With
respect to modification skills, seven were ranked as high
and four were ranked as low. Three subjects who answered
“NO” were classified into the low group for tracing but into
the high group for modification.

Table 7 shows the subjects’ grades for introductory
programming summarized for the high and low tracing and

Table 4 Score comparison of tracing task between
high group and low tracing group. (Bonferroni

corrected p-values)
ID Group Mead (SD) Difference

Ot-1
High 98.2 (4.0)

t(7.3)=3.21,p=0.140 Low 85.7 (9.8)

Sl-1
High 94.5 (12.9)

t(11.4)=2.93,p=0.133 Low 74.3 (15.1)

Sl-2
High 97.3 (6.5)

t(6.3)=2.39,p=0.525 Low 67.1 (33.0)

It-1
High 93.7 (11.3) *

t(6.7)=4.16,p=0.046 Low 33.1 (37.4)

It-2
High 95.4 (13.8) *

t(7.2)=4.01,p=0.049 Low 39.1 (35.4)

It-3
High 98.5 (3.5) *

t(6.1)=4.52,p=0.039 Low 40.0 (34.2)

It-4
High 99.5 (1.5) *

t(6.0)=4.48,p=0.042 Low 39.7 (35.3)

Ns-1
High 86.5 (21.5) ***

t(15.2)=8.38,p<0.001 Low 11.1 (16.5)

Ns-2
High 84.5 (23.5) ***

t(15.5)=7.70,p<0.001 Low 10.3 (17.3)

Ns-3
High 90.3 (19.1) *

t(8.0)=4.16,p=0.032 Low 25.9 (38.0)

Table 5 Comparison of modification task between
high group and low tracing group. (Bonferroni

corrected p-values)
ID Group Mead (SD) Difference

Ot-1
High 92.3 (14.4)

t(9.9)=0.50,p=1.0 Low 87.9 (20.2)

Sl-1
High 95.0 (12.4)

t(6.7)=1.77,p=1.0 Low 65.7 (42.8)

Sl-2
High 89.5 (24.1)

t(8.3)=1.97,p=0.833 Low 53.3 (44.7)

It-1
High 90.9 (30.2)

t(8.5)=2.17,p=0.601 Low 42.9 (53.5)

It-2
High 100 (0.0)

t(6.0)=2.83,p=0.300 Low 42.9 (53.5)

It-3
High 90.9 (30.2)

t(9.1)=1.26,p=1.0 Low 65.6 (47.2)

It-4
High 100 (0.0)

t(6.0)=1.73,p=1.0 Low 75.4 (37.5)

Ns-1
High 93.2 (15.4) *

t(8.1)=4.12,p=0.033 Low 43.3 (29.6)

Ns-2
High 59.6 (27.5)

t(15.5)=2.20,p=0.430 Low 34.9 (20.1)

Ns-3
High 84.9 (26.1)

t(13.5)=2.99,p=0.101 Low 48.6 (24.5)

Table 6 Summary count of programming experience
questionnaire answer of high and low group in each

task. Value in a cell is a number of subjects.
 Group Tracing task Modification task

Yes
High 7 7

Low 0 0

No
High 4 7

Low 7 4

Table 7 Summary count of introductory
programming class grades questionnaire answer for

high and low group of each task.
Introductory Group Tracing task Modification task

S
High 2 3

Low 1 0

A
High 3 4

Low 2 1

B
High 1 1

Low 0 0

C
High 4 5

Low 4 3

N
High 1 1

Low 0 0

Table 8 Summary count of advanced programming
class grades questionnaire answer for high and low

group of each task.
Advanced Group Tracing task Modification task

S
High 3 3

Low 0 0

A
High 4 4

Low 0 0

B
High 0 0

Low 0 0

C
High 0 1

Low 2 1

N
High 4 6

Low 5 3

－ 11－

Satoru KIKUCHI and Kazuhiko HAMAMOTO

 ― 6 ―

[2] Salleh, S. M et al., "Analysis of Research in
Programming Teaching Tools: An Initial Review",
Procedia - Social and Behavioral Sciences, Volume
103, pp.127–135 (2013)

[3] Sheard, J et al., "Analysis of research into the teaching
and learning of programming", Proceedings of the
Fifth International Workshop on Computing Education
Research Workshop - ICER ’09, 93. (2009)

[4] Lister, R et al., “A multi-national study of reading and
tracing skills in novice programmers”, ACM SIGCSE
Bulletin. Vol. 36. (2004)

[5] Rolandsson, L. "Changing computer programming
education: The dinosaur that survived in school: An
explorative study about educational issues based on
teachers’ beliefs and curriculum development in
secondary school", Proceedings - 2013 Learning and
Teaching in Computing and Engineering, LaTiCE 2013,
pp.220–223 (2013)

[6] Prince, M. J., Felder, R. M. "Inductive Teaching and
Learning Methods: Definitions, Comparisons, and
Research Bases", Journal of Engineering Education,
Vol. 95, Issue 2, pp.123–138 (2006)

[7] Kaczmarczyk, L. C et al., "Identifying student
misconceptions of programming", Proceedings of the
41st ACM Technical Symposium on Computer Science
Education - SIGCSE ’10, pp.107–111(2010)

[8] O’Kelly, J., Gibson, J. P. "RoboCode & problem-based
learning", Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in
Computer Science Education - ITICSE ’06, Volume 38,
Issue 3, pp.218-221 (2006)

[9] Nuutila, E et al., "Learning programming with the PBL
method - Experiences on PBL cases and tutoring"
Lecture Notes in Computer Science (including
Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 4821 LNCS,
pp.47–67 (2008)

[10] Kinnunen, P et al., "Problems in Problem-Based
Learning–Experiences, Analysis and Lessons Learned
on an Introductory Programming Course", Informatics
in Education-An International Journal, NO.4, Vol.2,
pp.193–214(2005)

[11] Lopez, M et al., "Relationships between reading,
tracing and writing skills in introductory
programming", Proceeding of the Fourth International
Workshop on Computing Education Research -
ICER ’08, pp.101–112. (2008)

[12] Mitsuo Y et al., "Research on programming skill
hierarchy", IPSJ SIG Technical Report,
Vol.2010-CE-104, No.3, pp.1-25 (2010)

Appendix: Question of each tasks.
Questions of tracing task. Program lines of define, main function
and return is abbreviated.
Output 1 (Ot-1).
 int a=20, b=40, c=10;
 a = 10;
 b = 15 + b;
 c = 10 + a;
 printf("%d,%d,%d", a, b, c);
Selection 1 (Sl-1).
 int a = 20;
 if(a > 30){
 printf("%d,", a);
 a = a + 40;
 } else {
 printf("%d,", a);
 a = a + 10;
 }
 printf("%d", a);
Selection 2 (Sl-2).
 int a = 20;
 if(a > 35){
 printf("%d,", a);
 a = a + 20;
 } else {
 printf("%d,", a);
 a = a + 30;
 }
 printf("%d", a);
Iteration 1 (It-1).
 int a = 0, i;
 for(i=2;i<=6;i++){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Iteration 2 (It-2).
 int a = 0, i;
 for(i=2;i<=6;i=i+2){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Iteration 3 (It-3).
 int a = 0, i;
 for(i=6;i>=2;i=i-1){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Iteration 4 (It-4).
 int a = 0, i;
 for(i=6;i>=2;i=i-2){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Nested 1 (Ns-1).
 int a = 0, i;
 for(i=1;i<=5;i++){
 if(i>=3){
 a = a + i;
 }
 printf("%d-%d,",i, a);
 }
 printf("%d",a);

 ― 5 ―

modification groups. Table 8 shows the same analysis for
the advanced class. Grade S is the best grade, and Grade C
is the lowest grade. Grade N means that the subject failed
to earn a credit or that s/he did not take the class. For the
grades in introductory programming, the classification
result differs between the tasks for the grades S, A, and C.
Three subjects were classified into the low tracing group
but classified into the high modification group. For the
grades in advanced programming, the classification result
differs for the grades C and N.

5. Discussion

The results for selection and iteration show a different
tendency. Comparing the scores between the high and low
tracing groups for answering questions on iteration
statements (It-1 to It-4), we can only see a significant
difference for the tracing task, not for the modification task.
For questions on selection statements (Sl-1, Sl-2) the
answers did not show a significant difference for both
tracing and modification tasks. This result suggests the
possibility that the subjects applied different solution
strategies for the different statements. Knowledge about
selection statements that the subjects acquired in a
conventional method class tends to be suitable for
deduction. The results for the tracing task do not differ
between the high and low groups. This means that even the
low group was able to read the code. However, knowledge
about iteration statements does not seem well suited for
deduction. The tracing score is different between the high
and low groups, and there is a possibility that the subjects
applied other strategies such as induction or analogy. The
modification score of the low group is not worse than their
tracing score, and the score is the same as the score of the
high group. This means that subjects from the low group
could not read iteration code correctly, but they somehow
found the mistakes in the code for the modification task.
The knowledge that cannot read but can modify was
acquired from a conventional teaching method that does not
focus on gaining much experience with writing and
modifying iteration statements, so the subjects developed a
misconception of iteration statements. Considering an
experience-based method such as PBL that focuses on
acquiring a thorough understanding, the assumption is that
we can avoid misconceptions by gaining experience in
writing or modifying iteration statements.

The results for nested iteration-selection (Ns-1, Ns-2)
were different for each question. For the analysis of the
knowledge about nested iteration-selection, Ns-1 result is
preferred. Because, Ns-2 is a question that contains not
only about simple programming statement but it also
requires additional knowledge as it uses remainder. Since
Ns-1 shows a difference in both tasks, we can conclude that
it is difficult to trace and modify nested iteration-selection
statements for the low group. The reason for this could be a
lack of tracing skill for iteration statements. However, the

question about nested iteration-iteration (Ns-3) statements
shows no difference in modification. The result indicates
that nested iteration-iteration statements might be easier to
understand than nested iteration-selection statements. This
could be the case because nested iteration-iteration
statements (e.g., initialization of a two-dimensional array,
sort algorithm) do frequently occur and are considered
standard code. However, this requires further research, and
we need to study the comprehension of standard code
fragments with increased sample size and code variations.

In [4], the authors suggest that a poor writing skill can
be improved by progress in tracing, and they recommend a
tracing study. From the result of the experiment, we can
assume that performing a modification task before tracing
could be effective as modification is easier than tracing for
iteration statements. Students would then feel more
comfortable to answer the questions, and that would lead to
a reduced dropout rate for the class. For the study of
complex code such as nested code, experience with similar
code seems to be effective and creates background
knowledge about standard code.

Our questionnaire showed that students with a
misconception of iteration knowledge that were classified
into the low group for tracing but the high group for
modification, can achieve good grades in the introductory
class but got low grades or failed in the advanced class.

6. Conclusion

In this study, we investigated the relationship between
tracing and modification skills for different programming
statements. The result shows following three points: (1) it
is possible that the test subjects applied a different strategy
for selection statement knowledge and iteration statement
knowledge, (2) for iterative code, a code-modification task
is easier than a code-tracing task, and (3) it is possible that
experience with frequently occurring code facilitates the
learning process, even if the code is complex.

The results indicate that a teacher might customize
his/her teaching method for different kinds of statements,
that selection is best taught by a conventional method and
iteration by an experience-based method, and that complex
code is best taught by gaining experience with some
standard code samples.

Future work will look into the following two points: (1)
investigate whether experience with modifying iteration
code affects the tracing iteration skill, and (2) inquire into
the characteristic of frequently occurring code and whether
it shows a similar result as nested iteration-iteration in this
study.

References
[1] Pears, a et al., "A survey of literature on the teaching

of introductory programming", SIGCSE Bulletin, Vol.
39. Issue 4, pp.204–223. (2007)

－ 12－

Investigating the relationship between tracing skill and modification skill for different programming statements

 ― 6 ―

[2] Salleh, S. M et al., "Analysis of Research in
Programming Teaching Tools: An Initial Review",
Procedia - Social and Behavioral Sciences, Volume
103, pp.127–135 (2013)

[3] Sheard, J et al., "Analysis of research into the teaching
and learning of programming", Proceedings of the
Fifth International Workshop on Computing Education
Research Workshop - ICER ’09, 93. (2009)

[4] Lister, R et al., “A multi-national study of reading and
tracing skills in novice programmers”, ACM SIGCSE
Bulletin. Vol. 36. (2004)

[5] Rolandsson, L. "Changing computer programming
education: The dinosaur that survived in school: An
explorative study about educational issues based on
teachers’ beliefs and curriculum development in
secondary school", Proceedings - 2013 Learning and
Teaching in Computing and Engineering, LaTiCE 2013,
pp.220–223 (2013)

[6] Prince, M. J., Felder, R. M. "Inductive Teaching and
Learning Methods: Definitions, Comparisons, and
Research Bases", Journal of Engineering Education,
Vol. 95, Issue 2, pp.123–138 (2006)

[7] Kaczmarczyk, L. C et al., "Identifying student
misconceptions of programming", Proceedings of the
41st ACM Technical Symposium on Computer Science
Education - SIGCSE ’10, pp.107–111(2010)

[8] O’Kelly, J., Gibson, J. P. "RoboCode & problem-based
learning", Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in
Computer Science Education - ITICSE ’06, Volume 38,
Issue 3, pp.218-221 (2006)

[9] Nuutila, E et al., "Learning programming with the PBL
method - Experiences on PBL cases and tutoring"
Lecture Notes in Computer Science (including
Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 4821 LNCS,
pp.47–67 (2008)

[10] Kinnunen, P et al., "Problems in Problem-Based
Learning–Experiences, Analysis and Lessons Learned
on an Introductory Programming Course", Informatics
in Education-An International Journal, NO.4, Vol.2,
pp.193–214(2005)

[11] Lopez, M et al., "Relationships between reading,
tracing and writing skills in introductory
programming", Proceeding of the Fourth International
Workshop on Computing Education Research -
ICER ’08, pp.101–112. (2008)

[12] Mitsuo Y et al., "Research on programming skill
hierarchy", IPSJ SIG Technical Report,
Vol.2010-CE-104, No.3, pp.1-25 (2010)

Appendix: Question of each tasks.
Questions of tracing task. Program lines of define, main function
and return is abbreviated.
Output 1 (Ot-1).
 int a=20, b=40, c=10;
 a = 10;
 b = 15 + b;
 c = 10 + a;
 printf("%d,%d,%d", a, b, c);
Selection 1 (Sl-1).
 int a = 20;
 if(a > 30){
 printf("%d,", a);
 a = a + 40;
 } else {
 printf("%d,", a);
 a = a + 10;
 }
 printf("%d", a);
Selection 2 (Sl-2).
 int a = 20;
 if(a > 35){
 printf("%d,", a);
 a = a + 20;
 } else {
 printf("%d,", a);
 a = a + 30;
 }
 printf("%d", a);
Iteration 1 (It-1).
 int a = 0, i;
 for(i=2;i<=6;i++){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Iteration 2 (It-2).
 int a = 0, i;
 for(i=2;i<=6;i=i+2){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Iteration 3 (It-3).
 int a = 0, i;
 for(i=6;i>=2;i=i-1){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Iteration 4 (It-4).
 int a = 0, i;
 for(i=6;i>=2;i=i-2){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Nested 1 (Ns-1).
 int a = 0, i;
 for(i=1;i<=5;i++){
 if(i>=3){
 a = a + i;
 }
 printf("%d-%d,",i, a);
 }
 printf("%d",a);

－ 13－

Satoru KIKUCHI and Kazuhiko HAMAMOTO

東海大学紀要 情報通信学部
Vol.xx, No.xx , 20xx, pp.xxx -xxx

― 1 ―

高大連携に向けての試み

ー付属高校での入学前英語講座ー

岡田 礼子*1

The effect of pre-entrance study at a university-attached high school

by

Reiko OKADA*1

(received on May 27, 2016 & accepted on May 31, 2016)

あらまし

グローバル社会で発信できる英語力を大学在学中に養成するためには，入学時に少しでも高いレベルから学習を開

始する必要がある．しかし例年，付属高校出身者は潜在力をもっているにも関わらず，英語クラスの中位～下位レベ

ルに集中し，目標に近づくことが難しい．その理由として，英語の学習を「苦痛」と感じていることが判明した．そ

こで，付属高校からの進学予定者を対象に，入学前学習会を実施し，英文の基本ルールを体系的に理解させ，自分で

考えれば英文作成できることを体験させた．6回の学習会で，参加者の意識は大きく改善し，意欲的に学習に向かう

気持ちが生まれた．

Abstract

In order to be proficient in expressing ideas in English in the global society right after university graduation, it is necessary
for students to have fundamental English knowledge and motivation to learn from the start of university. However, there are
many students who feel painful in study of English. Therefore, the author visited one of the university-attached high schools
and gave lessons on basic English structures. Its aim is to have students think and create their own sentences using the basic
rules they have just learned and have them feel enjoyment of learning. The results showed that almost all the students were
more motivated and started feeling confident in studying in university.

キーワード：高大連携，入学前学習，英語，基礎文法，考えて書く
Keywords: liaison between university and high school , pre-entrance study, English, basic grammar, think and create

1. はじめに

平成26年12月22日の中央教育審議会答申1)で，基礎

学習不足で入学する学生の問題と英語教育の改善に

ついて，以下の通り指摘されている．

「基礎となる知識・技能自体の質と量が，大学教育

に求められる水準に比して不十分な段階にある学生

が多いことが深刻な問題となっている.」(p.4)「国際

共通語である英語の能力を，真に使える形で身に付け

ることが必要であり，単に受け身で『読むこと』『聞

くこと』ができるというだけではなく，積極的に英語

の技能を活用し，主体的に考えを表現することができ

るよう，『書くこと』『話すこと』を含めた四技能を

総合的に育成・評価することが重要である.」(p.7)

このような問題に対して，筆者が勤務する東海大学

情報通信学部の英語教育プログラムでは，英語習熟度

が低い学生向けのリメディアル教育を行いつつ，専門

分野の内容を英語で発信できる力の養成を学部全体

の目標として指導してきた．しかし，1～2年次の必修

英語4科目だけでは目標に達することは非常に難しく，

限られた時間の中で，どのような内容をどのような方

法で指導すべきかを模索し続けている．そんな折に，

中央教育審議会(2014)の「我が国社会の持続的な発展

を実現していくためには，高大接続の改善が不可欠」

(p.8)という発表に背中を押され，付属高校との高大

接続指導を試みることにした．

本稿では，これまでの本学部での指導を振り返り，

今後の改善の一手段として試みた付属高校での入学

前講座とその結果を報告し，今後の課題を考える．

2. これまでの問題

東海大学情報通信学部では2008年に学部を開設し

て以来，世界で活躍できる技術者の養成をめざし，専

門分野の内容を英語で発表できるようになることを

目標としてきた．しかし，学生の英語力には大きな差

があり，また，英語に対する学習意欲が低い学生も多

数いるため，必修科目では英語習熟度による8レベル

のクラス分けを行い，各レベルの学力に合った内容で

段階的に指導して，意欲的・継続的に学習に向かわせ

る様々な工夫をしてきた2)3)4)．その結果，学部内の英

語学習に対する意識が少しずつ高まり，TOEIC受験者

が増え，500点以上を取得する学生の数はこの数年で

大きく伸びてきた5)6)．

しかし，セメスタごとに着実に学力を伸ばしても，

*1 高輪教養教育センター 教授
Liberal Arts Education Center, Takanawa Campus，
Professor

トピックス

 ― 7 ―

Nested 2 (Ns-2).
 int a = 0, i;
 for(i=0;i<=5;i++){
 if(i%2==0){
 a = a + 2;
 }
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Nested 3 (Ns-3).
 int a = 0, i, j;
 for(i=0;i<=1;i++){
 for(j=0;j<=2;j++){
 a = a + 1;
 printf("%d-%d-%d,",i, j, a);
 }
 }
 printf("%d",a);

Questions of modification task. Program lines of define, main
function and return is abbreviated.
Output 1 (Ot-1).
Preferred result: 20,50,55
 int a=30, b=10, c=30;
 a = 20;
 b = 30 + a;
 c = 25 + c;
 printf("%d,%d,%d", a, b, c);
Selection 1 (Sl-1).
Preferred result: 30,80
 int a = 30;
 if(a > 10){
 printf("%d,", a);
 a = a + 50;
 } else {
 printf("%d,", a);
 a = a + 20;
 }
 printf("%d", a);
Selection 2 (Sl-2).
Preferred result: 15,55
 int a = 15;
 if(a > 20){
 printf("%d,", a);
 a = a + 10;
 } else {
 printf("%d,", a);
 a = a + 40;
 }
 printf("%d", a);
Iteration 1 (It-1).
Preferred result: 1-1,2-3,3-6,4-10,5-15,6-21,21
 int a = 0, i;
 for(i=1;i<=6;i++){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Iteration 2 (It-2).
Preferred result: 1-1,3-4,5-9,9
 int a = 0, i;
 for(i=1;i<=6;i=i+2){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);

Iteration 3 (It-3).
Preferred result: 6-6,5-11,4-15,3-18,2-20,1-21,21
 int a = 0, i;
 for(i=6;i>=1;i=i-1){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Iteration 4 (It-4).
Preferred result: 6-6,4-10,2-12,12
 int a = 0, i;
 for(i=6;i>=1;i=i-2){
 a = a + i;
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Nested 1 (Ns-1).
Preferred result: 1-0,2-2,3-5,4-9,5-14,6-20,20
 int a = 0, i;
 for(i=1;i<=6;i++){
 if(i>=2){
 a = a + i;
 }
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Nested 2 (Ns-2).
Preferred result: 0-2,1-2,2-2,3-4,4-4,5-4,6-6,6
 int a = 0, i;
 for(i=0;i<=6;i++){
 if(i%3==0){
 a = a + 2;
 }
 printf("%d-%d,",i, a);
 }
 printf("%d",a);
Nested 3 (Ns-3).
Preferred result: 0-0-1,0-1-2,1-0-3,1-1-4,2-0-5,2-1-6,6
 int a = 0, i, j;
 for(i=0;i<=2;i++){
 for(j=0;j<=1;j++){
 a = a + 1;
 printf("%d-%d-%d,",i, j, a);
 }
 }
 printf("%d",a);

－ 14－

Investigating the relationship between tracing skill and modification skill for different programming statements

